首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46351篇
  免费   4501篇
  国内免费   2154篇
医药卫生   53006篇
  2023年   363篇
  2022年   593篇
  2021年   1268篇
  2020年   974篇
  2019年   979篇
  2018年   1240篇
  2017年   1136篇
  2016年   1091篇
  2015年   1401篇
  2014年   1734篇
  2013年   1988篇
  2012年   2716篇
  2011年   2821篇
  2010年   1832篇
  2009年   1559篇
  2008年   2156篇
  2007年   2157篇
  2006年   1962篇
  2005年   1659篇
  2004年   1417篇
  2003年   1392篇
  2002年   1121篇
  2001年   2642篇
  2000年   2466篇
  1999年   2060篇
  1998年   803篇
  1997年   591篇
  1996年   389篇
  1995年   357篇
  1994年   331篇
  1993年   278篇
  1992年   1054篇
  1991年   931篇
  1990年   830篇
  1989年   919篇
  1988年   829篇
  1987年   753篇
  1986年   704篇
  1985年   621篇
  1984年   389篇
  1983年   322篇
  1982年   183篇
  1981年   140篇
  1980年   120篇
  1979年   203篇
  1978年   84篇
  1974年   84篇
  1973年   94篇
  1972年   92篇
  1971年   94篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
991.
Medial prefrontal cortex (MPFC) transection enhances social interaction in an open arena test. Social interaction enhances dopaminergic activity in the nucleus accumbens (NAC). In the present set of experiments, microdialysis probes were implanted in the NAC, and glutamate, gamma-aminobutyric acid (GABA) and dopamine (DA) were measured during electrical stimulation of the MPFC, after coronal transection caudal to the MPFC and after a systemic injection of amphetamine in transected rats. Electrical stimulation of the MPFC caused a transient enhancement of glutamate release in the NAC, no change in GABA levels and a long lasting increase in DA levels. Medial prefrontal transection did not change basal glutamate or GABA levels in the NAC, but increased basal DA levels. Amphetamine administration decreased GABA levels in medial prefrontal transected rats, had no effect on glutamate and increased DA levels more than in controls. The experiments suggest that glutamatergic activity in the accumbens decreases dopamine release. Medial prefrontal transection reduces glutamatergic tone and enhances dopamine release, which probably decreases GABAergic activity in the NAC. Presumably, GABA inhibition in the NAC enhances social interaction.  相似文献   
992.
Both the exogenous administration of fibroblast growth factor-2 (FGF-2) or the induction of moderate hypothermia have been shown to attenuate histopathology and improve functional outcome after traumatic brain injury (TBI). Since combined therapeutic strategies may be more beneficial than single therapies, we examined the potential synergistic effect of FGF-2 combined with moderate hypothermia treatment induced 10 min after TBI on functional and histological outcome following controlled cortical impact (CCI) injury. Fifty male Sprague-Dawley rats were randomized to one sham and four CCI treatment groups: Sham+vehicle (VEH); FGF-2 (45 microg/kg/h for 3 h i.v.)+Normothermia (37+/-0.5 degrees C); FGF-2+Hypothermia (32+/-0.5 degrees C for 3 h); VEH+Norm; VEH+Hypo. Vestibulomotor performance on the beam balance and beam-walk (BW) tasks on post-operative days 1-5 and spatial memory acquisition in the Morris water maze (MWM) on days 14-18 were assessed. After 4 weeks survival, histological evaluations (CA(1) and CA(3) cell counts and lesion volume) were performed. MWM performance improved in all treatment groups, but combined treatment was not more efficacious than either alone. The FGF-2+Hypo group performed significantly better than the other injured treatment groups in the BW task. Lastly, no significant group differences in beam balance or histological outcome were observed. These data suggest a suboptimal and incomplete synergy of combined FGF-2 and hypothermia treatment. These data may indicate that either our dose of FGF-2 or combination therapy was not optimized in our model.  相似文献   
993.
The pathological activation of microglia has been implicated in ischemic neuronal damage and some neurodegenerative diseases; however, the mechanism of microglial activation is not well understood. Previously, we showed that a serum factor, albumin, increased O(2)(-) production by cultured microglia (Si et al., 1997, Glia 21: 413-418). In the present study, we found that serum also enhanced lipopolysaccharide (LPS)-induced production of nitric oxide and tumor necrosis factor-alpha, which are other important neurotoxins released by activated microglia. In the presence of 0.1% normal rat serum, the half-effective concentration for LPS decreased from 300 to 1 ng/ml. The factor seemed to be a relatively high-molecular-weight protein because the factor was retained after a molecular sieve (50 kDa) membrane separation. The factor was labile to trypsinization and heat treatment at 72 degrees C for 5 min but was stable at 56 degrees C for 60 min. Several purified serum proteins including albumin could not mimic the enhancing effect of serum. Acute-phase serum showed a potent enhancing effect at a 10 times lower concentration than the normal serum. By gel filtration chromatography, the enhancing effect observed was a single peak at about 60 kDa. These results suggest that some serum protein infiltrates into brain parenchyma after blood-brain barrier disruption and such protein may result in neuronal damage by activating microglia to release neurotoxins in some central nervous system diseases.  相似文献   
994.
Traumatic brain injury (TBI) increases susceptibility to Alzheimer's disease (AD), but it is not known if TBI affects the progression of AD. To address this question, we studied the neuropathological consequences of TBI in transgenic (TG) mice with a mutant human Abeta precursor protein (APP) mini-gene driven by a platelet-derived (PD) growth factor promoter resulting in overexpression of mutant APP (V717F), elevated brain Abeta levels, and AD-like amyloidosis. Since brain Abeta deposits first appear in 6-month-old TG (PDAPP) mice and accumulate with age, 2-year-old PDAPP and wild-type (WT) mice were subjected to controlled cortical impact (CCI) TBI or sham treatment. At 1, 9, and 16 weeks after TBI, neuron loss, gliosis, and atrophy were most prominent near the CCI site in PDAPP and WT mice. However, there also was a remarkable regression in the Abeta amyloid plaque burden in the hippocampus ipsilateral to TBI compared to the contralateral hippocampus of the PDAPP mice by 16 weeks postinjury. Thus, these data suggest that previously accumulated Abeta plaques resulting from progressive amyloidosis in the AD brain also may be reversible.  相似文献   
995.
Several neurodegenerative disorders are characterized by filamentous inclusions in neurons that selectively degenerate. The role these inclusions play in neuron degeneration is unclear, but this issue can be investigated experimentally in relevant animal models. The NFH/LacZ transgenic (TG) mice overexpress the high-molecular-weight neurofilament (NF) subunit (NFH) fused to beta-galactosidase, and these hybrid proteins aggregate into NF-rich, filamentous neuronal cytoplasmic inclusions (NCIs) that have been implicated in the progressive, age-dependent degeneration in subsets of affected neurons. Thus, these TG mice recapitulate some of the key pathology of neurodegenerative disorders with intraneuronal inclusions. To determine if the NCIs compromise neuron survival following traumatic brain injury (TBI), 3- to 6-month old TG and wild-type (WT) mice were subjected to TBI or sham injury. At 2 weeks post-TBI, the TG group showed increased TUNEL staining and activated caspase-3 immunoreactivity in cells of cerebral cortex, adjacent white matter, and hippocampus underlying the injury site, relative to control mice, but this labeling decreased at 4 weeks and was minimal thereafter. Compared to control mice, by 8 weeks postinjury, the TG mice showed a marked decrease in neuron density and increased gliosis in the hippocampal dentate gyrus and CA3 region as well as in the lateral thalamus, while the few remaining CA3 neurons exhibited cytoskeletal alterations, decreased synaptic protein immunoreactivity, and dissolution of NCIs. The more profound long-term neurodegenerative sequelae of TBI in the NFH/LacZ mice compared to WT mice suggest that the presence of intraneuronal inclusions may impair the recovery and long-term viability of injured neurons.  相似文献   
996.
At birth, the mammalian nervous system must adapt rapidly to the new conditions it encounters in the extra-uterine environment. One aspect of this adaptation, known as arousal, is mediated by catecholamines, the levels of which in the brain increase rapidly after birth. The pattern of gene expression also changes. Shortly after birth, expression of the immediate early gene c-fos, known to reflect general neural activity, is up-regulated. Furthermore, asphyxia often occurs in connection with birth. In order to examine the effects of this phenomenon on the expression of c-fos, as well as on the rate of noradrenaline (NA) turnover, asphyxia was induced in rat pups delivered by caesarean section. Northern blot analysis and in situ hybridization revealed that the increase in expression of c-fos in certain areas of the brain was greatly enhanced by asphyxia of moderate duration; whereas more prolonged asphyxia lowered the level of c-fos mRNA. Asphyxia had a similar effect on the rate of NA turnover. Adrenergic receptor antagonists administered prior to birth attenuated the birth-related induction of c-fos mRNA. However, the potentiation of c-fos expression by asphyxia was not altered by these antagonists. Therefore, we propose that while catecholamines play an important role in the induction of c-fos in the brain at birth, the effects of asphyxia involve a different mechanism.  相似文献   
997.
Striatal trophic activity is reduced in the aged rat brain   总被引:2,自引:0,他引:2  
Our previous studies demonstrated that the survival of a mesencephalic graft was reduced in aged animals suggesting an age-related decline in target-derived neurotrophic activity. We tested this hypothesis by examining dopamine (DA) and trophic activities from the striatum of intact or unilateral 6-hydroxydopamine (6-OHDA) lesioned rats of increasing age. Fisher 344 rats were 4, 12, 18, and 23 months old (m.o.) at sacrifice. Half the animals had received unilateral 6-OHDA lesions of the mesostriatal DA pathway 8 weeks earlier. Striatal tissue punches were analyzed for DA, homovanillic acid (HVA), and DA activity (HVA/DA) using HPLC. The remainder of the striatal tissue was homogenized to generate tissue extracts which were added to E14.5 ventral mesencephalic cultures to test trophic activity. In the non-lesioned animals, striatal DA was reduced and striatal DA activity was increased in the 18 and 23 m.o. animals relative to the 4 and 12 m.o. animals. Striatal trophic activity was inversely related to age. In the lesioned animals, striatal DA ipsilateral to 6-OHDA infusion was below detection limits while the contralateral striatum exhibited age-related changes in DA similar to those seen in the non-lesioned animals. In 4 m.o. lesioned rats, striatal trophic activity ipsilateral to 6-OHDA infusion was elevated by 26% relative to the contralateral side. The ipsi/contra-lateral differences in striatal trophic activity were reduced in 12 m.o. animals and absent in the 18 and 23 m.o. groups. These data suggest that advancing age is associated with a reduction in striatal DA as well as trophic activity. Moreover, the aged striatum loses its ability to biochemically and trophically compensate for DA reduction and therefore may represent a more challenging environment for the survival, growth, and function of a fetal graft.  相似文献   
998.
Yuan PQ  Yang H 《Brain research》2000,868(1):22-30
Altered thyroid statuses are associated with autonomic disorders. Thyrotropin-releasing hormone (TRH) synthesized in medullary raphe pallidus (Rpa), raphe obscurus (Rob) and the parapyramidal regions (PPR) regulates vagal and sympathetic preganglionic motoneurons. Hypothyroidism increased TRH gene expression and c-Fos immunoreactivity (IR) in these nuclei. Whether these increases represent a direct action of thyroid hormone was studied by detecting the presence of thyroid hormone receptor beta2 (TRbeta2) in pro-TRH-synthesizing neurons in the Rpa, Rob and the PPR using immunohistochemistry with specific TRbeta2 antiserum and in situ hybridization with digoxigenin-labeled pro-TRH cRNA probe. TRbeta2 IR was widely distributed throughout the medulla and primarily localized within the cell nuclei. Particularly intense immunostaining was presented in the Rpa, Rob and the PPR neurons. The combination of immunohistochemistry with in situ hybridization revealed that all pro-TRH mRNA-positive neurons in these ventral medullary nuclei were also TRbeta2 IR positive. The numbers of TRbeta2 IR-positive neurons in each nucleus were identical in both euthyroid rats and hypothyroid rats induced by 6-n-propyl-2-thiouracil in drinking water for 4 weeks. The finding that TRbeta2 localized in pro-TRH-synthesizing neurons in the ventral medullary nuclei provides an anatomical substrate for a direct thyroid hormone action on these neurons in the regulation of TRH gene expression, which may contribute to the altered autonomic activity in different thyroid statuses.  相似文献   
999.
1000.
Milner QJ  Burchett KR 《Anaesthesia》2000,55(5):432-435
Survival following emergency surgery for ruptured abdominal aortic aneurysm remains poor and is in stark contrast to that for elective repair. We have carried out a 5-year retrospective observational study to determine the long-term (5-year) survival of patients following emergency surgery for ruptured abdominal aortic aneurysm at a district general hospital in East Anglia. A total of 99 patients presented to the operating theatre for emergency repair of ruptured abdominal aortic aneurysm in this 5-year study period. In-hospital mortality was 70% and was unchanged over the 5 years. Overall long-term survival in those patients discharged from hospital was good. The ICU cost per long-term survivor was calculated to be pound sterling 36750.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号